翻訳と辞書
Words near each other
・ Minami-Kōfu Station
・ Minami-machi 2-chome Station
・ Minami-machi 6-chome Station
・ Minami-Machida Station
・ Minami-Makigahara Station
・ Minami-Matsumoto Station
・ Minami-Matsuura District, Nagasaki
・ Minami-Miyazaki Station
・ Minami-morimachi Station
・ Minako Komukai
・ Minako Kotobuki
・ Minako Oba
・ Minako Onuki
・ Minako Sango
・ Minakshi
Minakshisundaram–Pleijel zeta function
・ Minakuchi Castle
・ Minakuchi Ishibashi Station
・ Minakuchi Jōnan Station
・ Minakuchi Matsuo Station
・ Minakuchi Station
・ Minakuchi, Shiga
・ Minakuchi-juku
・ Minakulu
・ Minal Hajratwala
・ Minal Hasan
・ Minalabac, Camarines Sur
・ Minalin, Pampanga
・ Minalungao National Park
・ Minalur


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Minakshisundaram–Pleijel zeta function : ウィキペディア英語版
Minakshisundaram–Pleijel zeta function
The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introduced
by . The case of a compact region of the plane was treated earlier by .
==Definition==

For a compact Riemannian manifold ''M'' of dimension ''N'' with eigenvalues
\lambda_1, \lambda_2, \ldots of the Laplace–Beltrami operator Δ the zeta function
is given for \operatorname(s) sufficiently large by
: Z(s) = \operatorname(\Delta^) = \sum_^ \vert \lambda_ \vert^.
(where if an eigenvalue is zero it is omitted in the sum). The manifold may have a boundary, in which case one has to prescribe suitable boundary conditions, such as Dirichlet or Neumann boundary conditions.
More generally one can define
: Z(P, Q, s) = \sum_^ \frac
for ''P'' and ''Q'' on the manifold, where the ''f''''n'' are normalized eigenfunctions. This can be analytically continued to a meromorphic function of ''s'' for all complex ''s'', and is holomorphic for ''P''≠''Q''.
The only possible poles are simple poles at the points ''s'' = ''N''/2, ''N''/2−1, ''N''/2−2,..., 1/2,−1/2, −3/2,... for ''N'' odd, and at the points ''s'' = ''N''/2, ''N''/2−1, ''N''/2−2, ...,2, 1 for ''N'' even. If ''N'' is odd then ''Z''(''P'',''P'',''s'') vanishes at ''s'' = 0, −1, −2,... If ''N'' is even its values can be explicitly by Wiener-Ikehara theorem as a corollary the relation
:\displaystyle Z(P,P,s)\sim\frac)^N\Gamma(N/2+1)}
where the sign ~ indicates that the quotient of both the sides tend to 1 when T tends to +∞.

The function ''Z''(''s'') can be recovered from this by integrating ''Z''(''P'', ''P'', ''s'') over the whole manifold ''M'':
:\displaystyle Z(s) = \int_M Z(P,P,s)dP

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Minakshisundaram–Pleijel zeta function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.